direct product, metabelian, soluble, monomial, A-group
Aliases: C2×C32⋊2C8, C62.1C4, (C3×C6)⋊2C8, C32⋊5(C2×C8), C3⋊Dic3.5C4, C22.2(C32⋊C4), C3⋊Dic3.9C22, (C3×C6).5(C2×C4), C2.3(C2×C32⋊C4), (C2×C3⋊Dic3).6C2, SmallGroup(144,134)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C32 — C3×C6 — C3⋊Dic3 — C32⋊2C8 — C2×C32⋊2C8 |
C32 — C2×C32⋊2C8 |
Generators and relations for C2×C32⋊2C8
G = < a,b,c,d | a2=b3=c3=d8=1, ab=ba, ac=ca, ad=da, dcd-1=bc=cb, dbd-1=b-1c >
Character table of C2×C32⋊2C8
class | 1 | 2A | 2B | 2C | 3A | 3B | 4A | 4B | 4C | 4D | 6A | 6B | 6C | 6D | 6E | 6F | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | |
size | 1 | 1 | 1 | 1 | 4 | 4 | 9 | 9 | 9 | 9 | 4 | 4 | 4 | 4 | 4 | 4 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -i | -i | i | i | -i | -i | i | i | linear of order 4 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | i | i | -i | -i | i | i | -i | -i | linear of order 4 |
ρ7 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -i | -i | i | i | i | i | -i | -i | linear of order 4 |
ρ8 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | i | i | -i | -i | -i | -i | i | i | linear of order 4 |
ρ9 | 1 | -1 | 1 | -1 | 1 | 1 | i | i | -i | -i | -1 | -1 | -1 | -1 | 1 | 1 | ζ87 | ζ83 | ζ85 | ζ8 | ζ87 | ζ83 | ζ85 | ζ8 | linear of order 8 |
ρ10 | 1 | -1 | 1 | -1 | 1 | 1 | i | i | -i | -i | -1 | -1 | -1 | -1 | 1 | 1 | ζ83 | ζ87 | ζ8 | ζ85 | ζ83 | ζ87 | ζ8 | ζ85 | linear of order 8 |
ρ11 | 1 | 1 | -1 | -1 | 1 | 1 | i | -i | i | -i | 1 | -1 | -1 | 1 | -1 | -1 | ζ85 | ζ8 | ζ87 | ζ83 | ζ8 | ζ85 | ζ83 | ζ87 | linear of order 8 |
ρ12 | 1 | 1 | -1 | -1 | 1 | 1 | i | -i | i | -i | 1 | -1 | -1 | 1 | -1 | -1 | ζ8 | ζ85 | ζ83 | ζ87 | ζ85 | ζ8 | ζ87 | ζ83 | linear of order 8 |
ρ13 | 1 | -1 | 1 | -1 | 1 | 1 | -i | -i | i | i | -1 | -1 | -1 | -1 | 1 | 1 | ζ85 | ζ8 | ζ87 | ζ83 | ζ85 | ζ8 | ζ87 | ζ83 | linear of order 8 |
ρ14 | 1 | 1 | -1 | -1 | 1 | 1 | -i | i | -i | i | 1 | -1 | -1 | 1 | -1 | -1 | ζ83 | ζ87 | ζ8 | ζ85 | ζ87 | ζ83 | ζ85 | ζ8 | linear of order 8 |
ρ15 | 1 | 1 | -1 | -1 | 1 | 1 | -i | i | -i | i | 1 | -1 | -1 | 1 | -1 | -1 | ζ87 | ζ83 | ζ85 | ζ8 | ζ83 | ζ87 | ζ8 | ζ85 | linear of order 8 |
ρ16 | 1 | -1 | 1 | -1 | 1 | 1 | -i | -i | i | i | -1 | -1 | -1 | -1 | 1 | 1 | ζ8 | ζ85 | ζ83 | ζ87 | ζ8 | ζ85 | ζ83 | ζ87 | linear of order 8 |
ρ17 | 4 | 4 | 4 | 4 | -2 | 1 | 0 | 0 | 0 | 0 | 1 | -2 | 1 | -2 | 1 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C32⋊C4 |
ρ18 | 4 | -4 | -4 | 4 | 1 | -2 | 0 | 0 | 0 | 0 | 2 | 1 | -2 | -1 | 2 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C2×C32⋊C4 |
ρ19 | 4 | 4 | 4 | 4 | 1 | -2 | 0 | 0 | 0 | 0 | -2 | 1 | -2 | 1 | -2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C32⋊C4 |
ρ20 | 4 | -4 | -4 | 4 | -2 | 1 | 0 | 0 | 0 | 0 | -1 | -2 | 1 | 2 | -1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C2×C32⋊C4 |
ρ21 | 4 | -4 | 4 | -4 | 1 | -2 | 0 | 0 | 0 | 0 | 2 | -1 | 2 | -1 | -2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from C32⋊2C8, Schur index 2 |
ρ22 | 4 | 4 | -4 | -4 | -2 | 1 | 0 | 0 | 0 | 0 | 1 | 2 | -1 | -2 | -1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from C32⋊2C8, Schur index 2 |
ρ23 | 4 | -4 | 4 | -4 | -2 | 1 | 0 | 0 | 0 | 0 | -1 | 2 | -1 | 2 | 1 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from C32⋊2C8, Schur index 2 |
ρ24 | 4 | 4 | -4 | -4 | 1 | -2 | 0 | 0 | 0 | 0 | -2 | -1 | 2 | 1 | 2 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from C32⋊2C8, Schur index 2 |
(1 11)(2 12)(3 13)(4 14)(5 15)(6 16)(7 9)(8 10)(17 33)(18 34)(19 35)(20 36)(21 37)(22 38)(23 39)(24 40)(25 45)(26 46)(27 47)(28 48)(29 41)(30 42)(31 43)(32 44)
(2 32 22)(4 24 26)(6 28 18)(8 20 30)(10 36 42)(12 44 38)(14 40 46)(16 48 34)
(1 31 21)(2 32 22)(3 23 25)(4 24 26)(5 27 17)(6 28 18)(7 19 29)(8 20 30)(9 35 41)(10 36 42)(11 43 37)(12 44 38)(13 39 45)(14 40 46)(15 47 33)(16 48 34)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)
G:=sub<Sym(48)| (1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,9)(8,10)(17,33)(18,34)(19,35)(20,36)(21,37)(22,38)(23,39)(24,40)(25,45)(26,46)(27,47)(28,48)(29,41)(30,42)(31,43)(32,44), (2,32,22)(4,24,26)(6,28,18)(8,20,30)(10,36,42)(12,44,38)(14,40,46)(16,48,34), (1,31,21)(2,32,22)(3,23,25)(4,24,26)(5,27,17)(6,28,18)(7,19,29)(8,20,30)(9,35,41)(10,36,42)(11,43,37)(12,44,38)(13,39,45)(14,40,46)(15,47,33)(16,48,34), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)>;
G:=Group( (1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,9)(8,10)(17,33)(18,34)(19,35)(20,36)(21,37)(22,38)(23,39)(24,40)(25,45)(26,46)(27,47)(28,48)(29,41)(30,42)(31,43)(32,44), (2,32,22)(4,24,26)(6,28,18)(8,20,30)(10,36,42)(12,44,38)(14,40,46)(16,48,34), (1,31,21)(2,32,22)(3,23,25)(4,24,26)(5,27,17)(6,28,18)(7,19,29)(8,20,30)(9,35,41)(10,36,42)(11,43,37)(12,44,38)(13,39,45)(14,40,46)(15,47,33)(16,48,34), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48) );
G=PermutationGroup([[(1,11),(2,12),(3,13),(4,14),(5,15),(6,16),(7,9),(8,10),(17,33),(18,34),(19,35),(20,36),(21,37),(22,38),(23,39),(24,40),(25,45),(26,46),(27,47),(28,48),(29,41),(30,42),(31,43),(32,44)], [(2,32,22),(4,24,26),(6,28,18),(8,20,30),(10,36,42),(12,44,38),(14,40,46),(16,48,34)], [(1,31,21),(2,32,22),(3,23,25),(4,24,26),(5,27,17),(6,28,18),(7,19,29),(8,20,30),(9,35,41),(10,36,42),(11,43,37),(12,44,38),(13,39,45),(14,40,46),(15,47,33),(16,48,34)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48)]])
C2×C32⋊2C8 is a maximal subgroup of
C62.3D4 C62.4D4 C62.6D4 C62.7D4 C62.2Q8 (C3×C12)⋊4C8 C32⋊2C8⋊C4 C62.6(C2×C4) C32⋊5(C4⋊C8) C62⋊3C8 C22.F9 C62.13D4 C62.(C2×C4)
C2×C32⋊2C8 is a maximal quotient of
C62.4C8 (C3×C12)⋊4C8 C62⋊3C8
Matrix representation of C2×C32⋊2C8 ►in GL6(𝔽73)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 72 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 72 | 72 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 72 | 72 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 72 | 72 |
51 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 41 | 51 | 0 | 0 |
0 | 0 | 10 | 32 | 0 | 0 |
G:=sub<GL(6,GF(73))| [1,0,0,0,0,0,0,72,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,72,0,0,0,0,1,72],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,72,1,0,0,0,0,72,0,0,0,0,0,0,0,0,72,0,0,0,0,1,72],[51,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,41,10,0,0,0,0,51,32,0,0,1,0,0,0,0,0,0,1,0,0] >;
C2×C32⋊2C8 in GAP, Magma, Sage, TeX
C_2\times C_3^2\rtimes_2C_8
% in TeX
G:=Group("C2xC3^2:2C8");
// GroupNames label
G:=SmallGroup(144,134);
// by ID
G=gap.SmallGroup(144,134);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-3,3,24,50,3364,256,4613,881]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^3=c^3=d^8=1,a*b=b*a,a*c=c*a,a*d=d*a,d*c*d^-1=b*c=c*b,d*b*d^-1=b^-1*c>;
// generators/relations
Export
Subgroup lattice of C2×C32⋊2C8 in TeX
Character table of C2×C32⋊2C8 in TeX